Interagency LNG Workgroup Meeting October 5, 2006 Seawater Cooling Elimination

Cabrillo Port BHP Billiton - World's Largest Diversified resource Co.

Petroleum 19% **Aluminium Base Metals** 23%

Carbon Steel Materials

30%

Cabrillo Port BHP Billiton Petroleum is the 9th Largest Energy Co.

bhpbilliton

Source: Bloomberg Data - 24 January 2006

Cabrillo Port BHP Billiton – California Connection

- BHP Billiton has a long presence in CA
- One of the State's most recognized landmarks has a BHPB pedigree.
- In 1980's the original wood panels of the Hollywood sign needed replacing
- BHPB furnished the new aluminum-zinc coated steel panels

Cabrillo Port BHPB FPSO Experience

Cabrillo Port Floating Storage & Re-gasification Unit (FSRU)

- L~290m B=65m D=31m Draft=13.2m
- Displacement ~ 210,000 DWT
- 3 x 56m Diameter Spherical LNG Tanks
- LNG Storage = 275,700m3
- POB = 50 men

- Installed Generation ~ 30MW in 4 units.
- Normal Throughput = 650 900 MMSCFD
- Re-gas submerged combustion vaporizers
- Permanent Bow Turret Mooring in 870m wd.
- Two 3MW Thrusters for heading control

Regasification Process Block Diagram

Previous Design Basis - Standard Marine Cooling System

- Standard marine technology uses sea water for cooling
 - Tankers, bulk carriers and general shipping
 - LNG carriers
 - FPSO's
- Sea water is used to cool / remove heat from marine equipment such as:
 - Power generators
 - Inert gas generator (intermittent user)
 - Air conditioning in accommodation modules
 - Compressors
 - Fresh water makers
- Sea water is screened/filtered to remove seaweed etc. and treated chemically to prevent marine growth in the equipment

bhpbill

Sea Water Cooling Schematic (Typical Marine Application)

Redesign of Cabrillo Port FSRU Cooling System

DRIVERS

- CCC concern about seawater discharge in excess of CA thermal plan
 - Initial design exceeded thermal plan by 9 deg F
- Trade off between thermal plan excedence & bio-mass
 - Utilize more cooling water → results in lower seawater discharge temperature but increases bio-mass intake

CHALLENGE:

Find a solution to CA thermal plan without impacting bio-mass under normal operation

SOLUTION:

Utilize the available cold LNG to provide cooling for the heat generating sources on the FSRU

SCV Design Selected for the FSRU

Sub-X® "Single Burner" Vaporizer

- Compact, high thermal efficiency (99%),
- Low NOx (20ppmv) emissions,
- 50m3/hr fresh water discharge
- Ample room to accommodate additional heat exchanger coils in outer shell.

Division of Selas Fluid Processing Corporation

Process Schematic - Tempered Water Loop with Seawater Backup

Design Solution -Tempered Water Loop with Seawater Backup

Advantages:

- Tempered water loop maintains segregation between Engine Room and Process Area (barrier fluid)
- Tempered water is a non-corrosive fluid
- Utilize sea water pumps required for IGG as back-up
- Low additional deck space required (pumps + plate exchangers)
- Utilizes readily available standard components (pumps, exchangers)

Disadvantages:

- Additional tempered water circulation pumps
- Additional expansion tank

Sea Water Usage with Tempered Water Closed Loop System

- Sea water used intermittently SCV's out of service (4 days / yr)
 - Maintenance and scheduled downtime (e.g. tank inspections)
 - Unscheduled downtime:
 - Weather
 - Equipment breakdown
 - No gas export
- Inert Gas Generator
 - Non-seawater options investigated but none have been found to suit the needs for marine operation
 - Require high volumes and high flow rates
 - Annual usage is 4 days per year for entry and inspection of LNG tanks

bhpbil

Closed Loop Cooling System - Technical Viability

- Additional Equipment
 - Tempered water and SCV water circulation pumps (4 total)
 - Seawater backup heat exchanger (1 only)
 - Tempered water / SCV water heat exchangers (2 total)
 - Tempered water expansion vessel (1 only)

(Note – all of the above are readily available off the shelf components, and require no technology advancement)

- Design has been reviewed and verified as operable by marine operations personnel
- Bottom line Design is well advanced and far beyond the "smoke and mirrors" stage as recently referenced in the press

Seawater Cooling Elimination - Summary

Seawater cooling eliminated during <u>normal</u> operation (all but 4-8 days/yr)

- Environmental Benefits
 - No seawater discharged → conforms with CA Thermal Plan
 - No marine growth inhibition required
 - No intake of sea water → no biomass removed from environment
- Additional Benefits
 - Reduced fuel gas consumption through heat integration
 - Reduction in air emissions
- Disadvantages
 - Increased CAPEX approximately \$3 MM, + / 25%
 - Some additional complexity for operations

